COMPUTATIONAL FLUID DYNAMICS

Course Code	19ME4701A	Year	IV	Semester	I	
Course Category:	Program Elective	Branch	ME	Course Type	Theory	
Credits:	3	L-T-P	3 - 0 - 0	Prerequisites:	Nil	
Continuous Evaluation:	30	Semester End Evaluation:	70	Total Marks:	100	

Cours	Course Outcomes				
Upon	Upon successful completion of the course, the student will be able to				
CO1	Develop an understanding for the major theories, approaches and				
	methodologies used in CFD				
CO ₂	CO2 Understand physical behaviour of partial difference equations				
CO3	CO3 Apply numerical math to convert PDE's into Finite Difference equations				
CO4	Build up the skills in Grid generation techniques L3				
CO5	5 Use finite volume technique to discretise diffusion and convection problems I				

Course Articulation Matrix:

	Contribution of Course Outcomes towards achievement of Program Outcomes Strength of correlations (3: High, 2: Moderate, 1: Low)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	3	-	-	-	-	_	-	3	3	2
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3	2
CO3	3	3	3	3	3	-	-	-	-	-	-	3	3	2
CO4	3	3	3	3	3	-	-	-	-	-	-	3	3	2
CO5	3	3	3	3	3	-	-	-	-	_	-	3	3	2

	Course Content	Mapped CO s
UNIT-1	Introduction to Computational Fluid Dynamics and Principles of Conservation: Computational Fluid Dynamics: What, When, and Why?, CFD Applications, Numerical vs Analytical vs Experimental, Modeling vs Experimentation. Fundamental principles of conservation, Reynolds transport theorem, Conservation of mass, Conservation of linear momentum: Navier-Stokes equation, Conservation of Energy	CO1
UNIT-2	Classification of Partial Differential Equations and Physical Behavior: Mathematical classification of Partial Differential Equation, Illustrative examples of elliptic, parabolic and hyperbolic equations Physical examples of elliptic, parabolic and hyperbolic partial differential equations.	CO 2
UNIT-3	1	CO3

	Finite Element Method, Finite difference method, Well posed					
	boundary value problem, Possible types of boundary conditions,					
	Conservativeness, Boundedness, Transportiveness.					
	Finite volume method (FVM), Illustrative examples: 1-D steady state					
	heat conduction without and with constant source term					
UNIT-4	Grid Generation:	CO4				
	Transformation of coordinates. General principles of grid generation –					
	structured grids in two and three dimensions, algebraic grid					
	generation, differential equations based grid generation; Elliptic grid					
	generation.					
	Grid clustering, Grid refinement, Adaptive grids, Moving grids.					
	Algorithms, CAD interfaces to grid generation.					
UNIT-5	Finite Volume Method	CO5				
	Introduction, Application of FVM in diffusion and convection					
	problems, NS equations – staggered grid, collocated grid, SIMPLE					
	algorithm.					
	Solution of discretized equations using TDMA. Finite volume methods					
	for unsteady problems – explicit schemes, implicit schemes.					

	Learning Resources					
Text	1. Computational Fluid Dynamics - Basics with Applications - John. D.					
Books:	Anderson, JR. McGraw Hill Education (India) Edition 2012.					
	2. Computational Fluid Dynamics - T. J. Chung, Cambridge University Press,					
	2nd Edition, 2014.					
Reference	1. Introduction to computational fluid mechanics - Niyogi, Chakravarty, Laha,					
Books:	Pearson pub. 1st ed. 2009.					
	2. Numerical heat transfer and fluid flow - S.V. Patankar, Hemisphere Pub. 1 st					
	ed.					
	3. Computational Fluid flow and Heat transfer - K. Muralidhar and T.					
	Sundararajan, Narosa Pub. 2nd ed. 2003.					
E -	http://ocw.mit.edu/courses/mechanical-engineering/2-29-numerical					
Resources	fluidmechanics-fall-2011/					
& other	http://nptel.ac.in/courses/112105045/(IIT Kharagpur)					
digital	http://nptel.ac.in/courses/112107080/(IIT Roorkee)					
Material:	http://nptel.ac.in/courses/112104030/(IIT Kanpur)					
	http://www.nptelvideos.in/2012/11/computational-fluid-					
	dynamics.html (IIT Madras)					
	http://www.cfd-online.com/					